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1. Introduction

In recent years there has been rapid progress in understanding how to construct lattice ac-

tions for a variety of continuum supersymmetric theories (see ref. [1] for a recent summary).

Supersymmetric gauge theories are expected to exhibit many fascinating nonperturbative

effects; furthermore, in the limit of large gauge symmetries, they are related to quantum

gravity and string theory. A lattice construction of such theories provides a nonpertur-

bative regulator, and not only establishes that such theories make sense, but also makes

it possible that these theories may eventually be solved numerically. Although attempts

to construct supersymmetric lattice theories have been made for several decades, the new

development has been understanding how to write lattice actions which at finite lattice

spacing possess an exactly realized subset of the continuum supersymmetries and have

a Lorentz invariant continuum limit. These exact supersymmetries in many cases have

been shown to constrain relevant operators to the point that the full supersymmetry of

the target theory is attained without a fine tuning. We will refer to lattices which possess

exact supersymmetries as “supersymmetric lattices”. For alternative approaches where

supersymmetry only emerges in the continuum limit, see [2, 3].

There have been two distinct approaches in formulating supersymmetric lattice ac-

tions, recently reviewed in ref. [4]. One involves a Dirac-Kähler construction [5, 6] which

associates the Lorentz spinor supercharges with tensors under a diagonal subgroup of the

product of Lorentz and R-symmetry groups of the target theory (an R-symmetry is a global

symmetry which does not commute with supersymmetry). These tensors can then be given

a geometric meaning, with p-index tensors being mapped to p-cells on a lattice. A lattice

action is then constructed from the target theory which preserves the scalar supercharge

even at finite lattice spacing [7 – 16]. This work was foreshadowed by an early proposal to
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use Dirac-Kähler fermions in the construction of a supersymmetric lattice Hamiltonian in

one spatial dimension [17]. A more ambitious construction which purports to preserve all

supercharges on the lattice has been proposed [18 – 22], but remains controversial [23].

The other method for constructing supersymmetric lattices, and the one employed in

this Letter, is to start with a “parent theory”-basically the target theory with a parametri-

cally enlarged gauge symmetry-and reduce it to a zero-dimensional matrix model. One then

creates a d-dimensional lattice with Nd sites by modding out a (ZN )d symmetry, where this

discrete symmetry is a particular subgroup of the gauge, global, and Lorentz symmetries

of the parent theory [24 – 31]. The process of modding out the discrete symmetry is called

an orbifold projection. Substituting the projected variables into the matrix model yields

the lattice action. The continuum limit is then defined by expanding the theory about a

point in moduli space that moves out to infinity as N is taken to infinity, as introduced in

the method of deconstruction [32].

Although apparently different, these two approaches to lattice supersymmetry yield

similar lattices. The reason for this is that in the orbifold approach, the placement of

variables on the lattice is determined by their charges under a diagonal subgroup of the

product of the Lorentz and R symmetry groups, in a manner similar to the Dirac-Kähler

construction [33].

To date, supersymmetric lattices have been constructed for pure supersymmetric Yang-

Mills (SYM) theories, as well as for two-dimensional Wess-Zumino models. In this Letter

we take the next step and show how to write down lattice actions for gauge theories with

charged matter fields interacting via a superpotential. In particular, we focus on two-

dimensional gauge theories with four supercharges. These are called (2, 2) supersymmetric

gauge theories, and are of particular interest due to their relation to Calabi-Yau manifolds,

as discussed by Witten [34]. Our construction also yields general insights into the logic of

supersymmetric lattices.

2. (2, 2) SYM

We begin with a brief review of the (2, 2) pure Yang-Mills theory. The field content of the

(2, 2) SYM theory is a gauge field, a two-component Dirac spinor, and a complex scalar s,

with action

L =
1

g2
2

Tr

(

∣

∣Dms
∣

∣

2
+ Ψ DmγmΨ +

1

4
vmnvmn

+
√

2(ΨL[s,ΨR] + ΨR[s†,ΨL]) +
1

2
[s†, s ]2

)

; (2.1)

both Ψ and s transform as adjoints under the gauge symmetry. The first supersymmetric

lattice for a gauge theory was the discretization of the above action using the orbifold

method [26]. To construct a lattice for this theory, one begins with a parent theory which

is most conveniently taken to be N = 1 SYM in four dimensions with gauge group U(kN2),

where the gauge group of the target theory eq. (2.1) is U(k). The parent theory possesses

four supercharges, a gauge field vµ, and a two component Weyl fermion λ and its conjugate
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Figure 1: The lattice for pure (2, 2) gauge theory, from ref. [26].

λ, each variable being a kN2-dimensional matrix. When reduced to a matrix model in zero

dimensions, the Euclidean theory has a global symmetry GR = SU(2)L × SU(2)R × U(1),

where the nonabelian part is inherited from the four dimensional Lorentz symmetry, and

the U(1) is the R-symmetry consisting of a phase rotation of the gaugino. From the three

Cartan generators L3, R3, Y of GR we construct two independent charges r1,2 under which

the variables of the theory take on charges 0 and ±1 (integer values are required for the

lattice construction, and magnitude no bigger than one to ensure only nearest neighbor

interactions on the lattice). One can define:

r1 = −L3 + R3 − Y , r2 = +L3 + R3 − Y , (2.2)

where Y is 1/2 times the conventionally normalized R-charge in four dimensions. By

writing vµ, λ and λ as

vµσµ =

(

z1 −z2

z2 z1

)

, λ =

(

λ1

λ2

)

, λ =
(

λ1 λ2

)

, (2.3)

where σµ = {1, i~σ}, we arrive at the charge assignments shown in table 1. The Nd site

lattice is then constructed by assigning to each variable a position in the unit cell dictated

by its ~r = {r1, r2} charges, where {0, 0} corresponds to a site variable, {1, 0} corresponds

to an oriented variable on the x-link, etc. Thus from the charges in table 1 we immediately

arrive at the lattice structure shown in figure 1.

The orbifold lattice construction technique also renders writing down the lattice ac-

tion a simple mechanical exercise; here we summarize the results of ref. [26]. The lattice

variables in figure 1 are k-dimensional matrices, where Greek letters correspond to Grass-

mann variables, while Latin letters are bosons. The lattice action possesses a U(k) gauge

symmetry and single exact supercharge which can be realized as Q = ∂/∂θ, where θ is a

Grassmann coordinate. To make the supersymmetry manifest, the variables are organized
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z1 z1 z2 z2 λ1 λ2 λ1 λ2 d

L3 −1
2 +1

2 +1
2 −1

2 0 0 −1
2 +1

2 0

R3 +1
2 −1

2 +1
2 −1

2 +1
2 −1

2 0 0 0

Y 0 0 0 0 +1
2 +1

2 −1
2 −1

2 0

r1 +1 −1 0 0 0 −1 +1 0 0

r2 0 0 +1 −1 0 −1 0 +1 0

Table 1: The r1,2 charges of the gauge multiplet.

into superfields as

Zi,n = zi,n +
√

2 θ λi,n,

Λn = λ1,n + θ
[

(zi,nzi,n − zi,n−ei
zi,n−ei

− idn)
]

,

Ξij,n = λ2,nεij + 2 θ
(

zi,n+ei
zj,n − zj,n+ej

zi,n

)

, (2.4)

where a sum over repeated i indices is implied, n is a lattice vector with integer components,

and ei is a unit vector in the i direction. The zi bosons are supersymmetric singlets. The

lattice action may then be written in manifestly supersymmetric form:

S =
1

g2

∑

n

∫

dθ Tr

[

1

2
Λn∂θ Λn − Ξij,nZi,nZj,n+ei

+Λn (Zi,nzi,n − zi,n−ei
Zi,n−ei

)

]

. (2.5)

The continuum limit is defined by expanding about the point in moduli space zi = zi =

(1/
√

2a)1k, where 1k is the k-dimensional unit matrix and a is identified as the lattice

spacing, and then taking a → 0 with L = Na and g2 = ga held fixed. An additional soft

supersymmetry breaking mass term

δS =
1

g2

∑

n

a2µ2

(

zi,nzi,n − 1

2a2

)

(2.6)

may be introduced to the action in order to lift the degeneracy of the moduli and fix

the vacuum expectation value of the gauge bosons. The mass parameter µ is chosen

to scale as µ ∼ 1/L so as to leave physical properties at length scales smaller than 1/µ

unaffected by this modification to the action. The lattice action has been shown to converge

to the (2, 2) target theory eq. (2.1) with the lattice and continuum variables related as

zi = 1√
2
(1/a + si + ivi), where

s =
s1 + is2√

2
, Ψ =

(

λ1

λ2

)

, Ψ =
(

λ1 λ2

)

(2.7)

in a particular basis for the Dirac γ matrices [26].
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A A ψ1 ψ2 ψ1 ψ2 F F

L3 0 0 0 0 −1
2 +1

2 0 0

R3 0 0 +1
2 −1

2 0 0 0 0

Y +y −y y − 1
2 y − 1

2 −y + 1
2 −y + 1

2 y − 1 −y + 1

r1 −y +y 1 − y −y +y −1 + y y − 1 −y + 1

r2 −y +y 1 − y −y −1 + y +y y − 1 −y + 1

Table 2: The r1,2 charges of the matter multiplet.

3. Adjoint matter

We now turn to supersymmetric lattices for gauge theories with matter multiplets, once

again employing the orbifold technique. To illustrate the general structure of these theories

on the lattice, we first consider as our target theory a (2, 2) gauge theory with gauge group

G = U(k) (with k = 1 a possibility) and Nf flavors of adjoint matter fields. The parent

theory is a four dimensional N = 1 theory with gauge group G̃ = U(kN2) and chiral

superfields Φa, a = 1, . . . , Nf transforming as adjoints under G̃, and a superpotential

W (Φ) that preserves the U(1) R-symmetry.

The orbifold projection of the matter fields follows a similar path from that outlined

in the previous section for the gauge multiplet. Each chiral field Φ from the parent theory

contributes a boson A, auxiliary field F , and two component fermion ψi; Φ contributes

barred versions of the same. Once again, the placement of these variables on the lattice is

entirely dictated by their transformation properties under the global SU(2)R×SU(2)L×U(1)

symmetry of the parent theory, which we give in table 2. An ambiguity is apparent in the

assignment of the U(1) symmetry to each field, and we have assigned in the parent theory

a U(1) charge y to our generic Φ. Without a superpotential, there is freedom to assign to

each chiral superfield an independent value for y; however, it is apparent from table 2 that

to obtain a sensible lattice with only nearest neighbor interactions (i.e. all ri charges equal

to 0 or ±1), we are constrained to choose y = 0 or y = 1. The result of this choice is shown

in figure 2; in fact, we will need both types of matter multiplets, since the superpotential

W must have net charge Y = 1.

We can organize the chiral multiplet Φ of the parent theory for either case y = 0, 1

into lattice superfields:

An = An +
√

2θψ2,n,

Ψn = ψ1,n −
√

2θFn,

Ψi,n = ψi,n + 2θ εij(An+ej
zj,n+y e12

− zj,nAn),

Fn = Fn − 2θ

(

An+e12
λ2,n+y e12

− λ2,nAn

+εijεik

[

ψk,n+ej
zj,n+y e12

− zj,n+ei
ψk,n

]

)

, (3.1)

where e12 = (e1 + e2) and A is a supersymmetric singlet. Note the appearance of λ2 and

zi from the gauge supermultiplet eq. (2.4), which implies nontrivial consistency conditions
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F,

Figure 2: Placement of the matter variables within the unit cell for the two choices y = 0 and

y = 1 for the U(1) R-charge.

which can be shown to hold. In the appendix we make contact between the rather unfa-

miliar multiplet structure in eq. (3.1), and the more familiar chiral superfields from N = 1

supersymmetry in the 3 + 1 dimensional continuum.

In terms of the above fields, the orbifold projection of the parent theory produces the

following lattice kinetic Lagrangian for the matter:

Lkin =
1

g2

∫

dθ Tr
[

εijΨi,n

(

Zj,n+y e12
An+ej

− AnZj,n

)

+An (Λn+y e12
An − AnΛn) − 1√

2
FnΨn

]

. (3.2)

The superpotential contributions for the theory are

LW =
1

g2
Tr

[(
∫

dθ
1√
2
ΨaWa(A)

)

+ FaW a(A) −Ψa
1Ψ

b
2W ab(A)

]

, (3.3)

where W (A) is a polynomial in the A fields with R-charge y = 1 (and W (A) is its con-

jugate), while Wa = ∂W/∂Aa and Wab = ∂2W/∂Aa∂Ab. The space-time dependence has

been omitted as it is implied by the gauge invariance of the Lagrangian; each term in the

superpotential should form a closed loop on the space-time lattice. One can verify by ex-

plicit calculation that the θ-dependence cancels between the second and third terms after

summing over lattice sites, and therefore the action is annihilated by Q = ∂/∂θ and is

supersymmetric.

As an example of how to interpret the above terms, we consider a two flavor model

(Nf = 2) and the superpotential W (Φ) = cTrΦ1Φ2. The superpotential must carry charge

Y = 1, which can be satisfied by choosing for the superfields R-charges y1 = 1 and y2 = 0

for Φ1 and Φ2 respectively. These charge assignments dictate the lattice representation for

these superfields, as shown in figure 2. The first term in eq. (3.3), for example, is then

TrΨaWa(A) = cTr
(

Ψ1
n
A2

n
+ A1

n
Ψ2

n

)

(3.4)

which is seen to be gauge invariant since {A1,Ψ1} are {−diagonal, site} variables, while

{A2,Ψ2} are {site, +diagonal} variables.
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The continuum limit of the above theory is defined as in the previous section for the

pure gauge theory, and the desired (2, 2) theory with matter results at the classical level.

An analysis of the continuum limit, including quantum corrections can be found in the

appendix. In the case k = 1, the continuum gauge symmetry is U(1) and one obtains a

theory of neutral matter interacting via a superpotential.

4. More general matter multiplets

More general theories of matter fields interacting via gauge interactions and a superpo-

tential may be obtained by orbifolding the parent theory of § 3 by some N -independent

discrete symmetry, before orbifolding by ZN × ZN . Here we give several examples.

Example 1: SU(2) × U(1) with charged doublets. Consider the parent theory with a

U(3N2) gauge symmetry, adjoint superfields Φ1 and Φ2, and the superpotential W (Φ) =

cTr Φ1Φ1Φ2. Here, we choose y1 = 0 and y2 = 1 as R-charges for our superfields. This

theory has a Φa → (−1)aΦa symmetry, and so we can impose the initial orbifold condition

PΦaP = (−1)aΦa and PVP = V where V is the vector supermultiplet of the parent

theory and P is a U(3N2) matrix with {1, 1,−1} along the diagonal, where each entry is

an N2 dimensional unit matrix. This projection breaks the U(3N2) gauge symmetry down

to U(2N2)×U(N2), under which the projected matter field Φ1 decomposes as ( , )⊕( , )

and Φ2 decomposes as (adj, 1)⊕ (1,adj). We then orbifold the parent theory by ZN ×ZN ,

resulting in a lattice with an SU(2)×U(1)×U(1) gauge symmetry, with matter multiplets

transforming as 30,0 ⊕ 2±1/2,0 ⊕ 10,0 ⊕ 10,0 in the continuum limit. The doublet couples to

both the triplet and one of the singlets in the superpotential. Evidently the second U(1)

gauge sector decouples from the theory since no fields carry that charge.

It is possible to generalize the above construction to fundamental matter transforming

as +1⊕ −1 under SU(M)×U(1) gauge transformations by starting with a U((M +1)N2)

theory broken down to U(MN2) × U(N2).

Example 2: U(1)k quiver with Fayet-Iliopoulos terms. A different sort of theory may be

obtained by considering a parent theory with a U(kN2) gauge symmetry and a single matter

adjoint Φ with a superpotential W (Φ) = c/kTr Φk. The initial orbifold condition is V =

PVP † and Φ = ωPΦP † on the parent theory, where ω = exp(i2π/k) and P is the diagonal

kN2 dimensional “clock” matrix diag{1, ω, ω2 . . . , ωk−1}, each entry appearing N2 times.

This projection produces a quiver theory, breaking the gauge symmetry down from U(kN2)

to U(N2)k, and producing bifundamental matter fields Φa, with a = 1, . . . , k transforming

as ( , ) under Ga × Ga+1, where Ga = U(N2) and Gk+1 ≡ G1. The superpotential

becomes W (Φ) = cTrΦ1 · · ·Φk.

One can assign y = 1 to one of the k matter fields, and y = 0 to the others.

A subsequent ZN × ZN projection then produces a lattice theory with a U(1)k gauge

symmetry, where the descendants of the parent multiplet Φa carry U(1) charges qb =

(δab − δa,b−1), with qk+1 ≡ q1. One can also add Fayet-Iliopoulos terms to the action

given by −iξ
∫

dθ
∑

n
TrΛa

n
, as is apparent from eq. (2.4). Such a theory is directly re-

lated to Calabi-Yau manifolds, as discussed in ref. [34], and would be interesting to study

numerically.
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It should be apparent that although we focused on a U(1)k quiver, any U(p)q quiver

can be constructed in a similar manner. We have not found a way to construct lattices for

arbitrary matter representations.
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A. Superfield structure

The relationship between the lattice superfields defined in eq. (3.1) and the continuum

chiral superfields of the parent theory can be most easily seen if we turn off the gauge

interactions. Consider the familiar superfield formulation of N = 1 supersymmetry in four

dimensions. We work in the superspace coordinate basis (y, θ, θ) from ref. [35], where θ is

a two-component complex Grassmann spinor, and ym ≡ (xm + iθσmθ). In this basis the

chiral supercharges Qα are particularly simple,

Qα =
∂

∂θα
. (A.1)

Furthermore, a chiral superfield Φ(y, θ) is independent of θ in this basis, and may be

decomposed as

Φ = A(y) +
√

2θψ(y) + θθF (y)

= A(y, θ2) +
√

2θ1Ψ(y, θ2) , (A.2)

where we follow the spinor notation of [35], and A and Ψ are defined as

A = A(y) +
√

2 θ2ψ2(y) ,

Ψ = ψ1(y) −
√

2 θ2F (y) . (A.3)

We see that A and Ψ correspond to the first two lattice multiplets in eq. (3.1), where the

surviving lattice supersymmetry generator is Q2 = ∂/∂θ2.

The anti-chiral superfield in four dimensions may be written as Φ(y, θ). When this is

converted to the (y, θ, θ) basis, Φ has the expansion

Φ = A(y) +
√

2θψ(y) + θθF (y)

= A(y) −
√

2θj
[

Ψj(y, θ2) +
√

2θ1∂jA(y)
]

+θθ
[

F(y, θ2) −
√

2θ1εij∂iΨj(y, θ2)
]

, (A.4)

where

Ψi = ψi(y) +
√

2θ2εij∂jA(y) ,

F = F (y) −
√

2θ2∂jψj(y) . (A.5)
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The multiplets Ψi and F are just the continuum versions of the second two supermultiplets

in eq. (3.1), after replacing θ → θ2 and setting to zero the gauge and gaugino fields. Note

that the lattice supercharge we have constructed is gauge invariant, which is why the gauge

and gaugino fields appear in our lattice superfields.

With the above packaging, the kinetic energy and superpotential terms for matter in

the lattice theory coincide with those of the parent theory. For example, Lkin in eq. (3.2)

takes the familiar form

Lkin =
1

4

∫

dθ2 dθ1 dθ1 dθ2 ΦΦ . (A.6)

B. Continuum limit and renormalization

Radiative corrections and renormalization for the pure (2,2) gauge theory were considered

in ref. [26]; here we extend that analysis to include the matter fields interacting through a

superpotential

W = Tr
(

κA
2 ΦA + κAb

1 ΦAΦb + κAbc
0 ΦAΦbΦc

)

, (B.1)

where the index A sums over all flavors of y = 1 matter fields, while b and c sum over y = 0

matter fields (we have normalized the R-symmetry such that W has y = 1).

Induced operators in the Symanzik action take the form

δSO =
1

g2
2

∫

d2z COO , (B.2)

where O is a local operator in the continuum, and CO is a coefficient depending on the

lattice spacing a. The super-renormalizability of the target theory is most easily accounted

for by defining the scaling dimension of O according to the usual conventions of four -

dimensional theories: bosons have mass dimension 1, fermions have mass dimension 3/2, z

and θ have mass dimension −1 and −1
2 respectively. Then for an operator O of dimension

p, the coefficient CO induced by radiative corrections takes the form

CO = ap−4
∞
∑

`=1

c`(g
2
2a

2)` × F`(κ0, aκ1, a
2κ2) , (B.3)

where ` corresponds to the number of loops in a perturbative expansion, and c` is a di-

mensionless coefficient with only possible logarithmic dependence on a. The functions F`

may depend on both κn and κn, but will not diverge as inverse powers of a as a → 0.

Induced operators with coefficients which do not vanish as a → 0 will typically spoil the

continuum limit of the theory. However we see that these could only correspond to p = 2 at

` = 1, p = 1 at ` = 1, or p = 0 at ` = 1, 2. We can ignore the p = 0 case, which corresponds

to a cosmological constant and has no noticeable effects on the continuum limit. That

leaves us with the only operators to consider being dimension p = 1 (scalar tadpole) or

p = 2 (scalar mass or F tadpole). These operators must be consistent with the exact

symmetries of the lattice: (i) Q = 1 supersymmetry; (ii) the Z2 reflection symmetry about

– 9 –
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the diagonal link; (iii) gauge symmetry; (iv) U(1) symmetries. The latter include not only

the exact U(1)3 global symmetry corresponding to r1, r2 and y, but also the approximate

U(1)2 symmetry broken by the superpotential under which the κn act as spurions:

Φa → eiαΦa, ΦA → eiβΦA, κ0 → e−i(2α+β)κ0, κ1 → e−i(α+β)κ1, κ2 → e−iβκ2. (B.4)

There may be additional symmetries restricting the form of counterterms, depending on

the form of W .

At p = 2 the operators allowed by symmetry are
∫

dθTrΨA , TrFA , Tr AaAb . (B.5)

The second operator does not look supersymmetric, but one can verify that its θ component

is a total derivative and makes no contribution to the action. In each of the above cases

it is evident that the U(1)2 symmetry of eq. (B.4) mandates powers of aκ1 and/or a2κ2

in the operator coefficient CO, rendering each of these operators innocuous in the a → 0

continuum limit.

At p = 1 there exists a single operator allowed by the symmetries,

Tr Aa , (B.6)

which might be induced at one loop with a coefficient CO ∝ g2
2κ

Aab
0 κAb

1 times a possible

log. This contribution can either be calculated and cancelled off by introducing an explicit

tadpole term to the lattice action, or it may be forbidden by introducing a discrete Φa →
−Φa symmetry, eliminating the κ1 coefficient in the superpotential. In either case, the

continuum theory can be attained without any numerical fine-tuning.
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